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A lattice Boltzmann computational scheme is developed and applied to a model of the phonon gas.
This model has two types of phonons, transverse and longitudinal, that interact with one another
through a three-phonon collision process. Exact and relaxation time approximation treatments of the
collision operator are described. The computational scheme is tested in a study of the propagation of
small-amplitude second sound where the predictions of linearized phonon hydrodynamics are confirmed.
It is then employed to study two problems of current interest in nonlinear phonon hydrodynamics: (1)
the propagation of linear second sound in the presence of a steady heat current, and (2) the propagation

of nonlinear second sound.

PACS number(s): 51.10.+y, 51.30.+1, 63.20.Hp, 72.20.Ht

I. INTRODUCTION

The phonon gas was studied intensely about 25 years
ago in the context of discussion of the connection be-
tween the microscopic description of a system and its hy-
drodynamics [1]. A substantial and varied body of
theoretical work showed how to start with the Hamil-
tonian for an anharmonic crystal and end up with a hy-
drodynamics for the phonon gas [2]. This hydrodynamic
supported a second-sound mode, i.e., the propagation of
temperature fluctuations as waves. Experimental at-
tempts to observe second sound in crystals proceeded
apace, culminating in the initial observation of this
phenomenon by Ackerman and co-workers [3] in helium
crystals.

The experimental investigation of the behavior of a
phonon gas is far more difficult than their theoretical
elaboration because of the practical difficulty of having
isotopic and/or chemical impurity free, single crystals of
substantial size [3-5]. As of this writing there are
perhaps four crystals in which phonon hydrodynamic
behavior has been observed [6].

Recently there have been a number of theoretical in-
vestigations of the nonlinear behavior of the phonon gas.
(The earlier work was devoted exclusively to the linear
response of this gas.) The phenomena being described
have their source in nonlinear hydrodynamic equations
that are developed from the application of various gen-
eral principles. The work of Coleman and co-workers
[7], that leads, for example, to an unusual prediction
about the behavior of second sound in the presence of a
heat current employs the Cattaneo equation [8]. The
work of Ruggeri and co-workers [9], on the behavior of
large-amplitude temperature waves, is developed from a
nonlinear hydrodynamics that is grounded in the modern
extended thermodynamics.

It is of interest to have experiments to investigate the
phonon gas phenomena that are predicted by these non-
linear phenomenologies and to have the ready means to
interface experiment and phenomenology. The purpose
of this paper is to develop these means. To this end we
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construct a lattice Boltzmann computational apparatus
(LBA) for the phonon gas that is faithful to its known
linear hydrodynamics. We use this computational ap-
paratus to do experiments on the phonon gas that probe
it beyond linear response where the nonlinear phenome-
nology has something to say.

Lattice Boltzmann models are computational schemes
designed for the study of complex systems. The funda-
mental idea is that of developing computational rules for
the microscopic behavior of a “fluid” that are as simple
as possible while capturing the essential physics. These
rules are used to study the behavior of the “fluid” in com-
plex circumstances. Simple computational rules are
called for because the bulk of computational effort is de-
voted to watching the influence of complex circumstances
on the behavior of the fluid.

Notable examples of this line of research are the mod-
els of the Navier-Stokes fluid that have been developed
and employed to study flow in porous media. These are
described, for example, in the workshop proceedings edit-
ed by Doolen [10]. The phonon gas as we will encounter
it here does not have the complexity of being in a pore
space. It has intrinsic complexity in its microscopic
structure. It is a fluid of two interpenetrating com-
ponents, the longitudinal and transverse phonons, that
convert one into the other. The phonon gas can be sub-
ject to external fields that couple strongly to its hydro-
dynamic variables or drive it well beyond the range of
linear response.

In Sec. II we set up computational rules for a lattice
Boltzmann model of a phonon gas that has two types of
phonons, transverse and longitudinal, that interact with
one another through cubic anharmonicity. That is, we
adopt a three-phonon collision rule in which pairs of
transverse phonons coalesce into a longitudinal phonon
and vice versa. This collision process conserves energy
and momentum but not “particle” number. Fundamen-
tal to going ahead with use of the computational rules are
the analytic calculations that establish that the computa-
tional rules lead to the known physics in suitable cir-

cumstance. We sketch these calculations in Sec. III,
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where we demonstrate that energy and momentum con-
servation laws for slowly varying long wavelength distur-
bances are the known equations of phonon hydrodynam-
ics. As part of this demonstration we have to deal with a
shortcoming of the exact (or linearized) three-phonon
collision operator. It has a defective null space. We dis-
cuss this shortcoming (it is endemic to lattice Boltzmann
formulations) for phonon systems. We circumvent it by
employing a relaxation time approximation to the three-
phonon collision operator. Thus (1) the equations of pho-
non hydrodynamics are found in the relaxation time ap-
proximation to the collision operator and (2) the three-
phonon collision operator in the computational rules is
replaced by the relaxation time approximation.

In Sec. IV we show the results of a series of numerical
experiments carried out using the lattice Boltzmann
description of the phonon gas. We make two experimen-
tal tests to see that the phonon gas so described obeys the
linearized phonon hydrodynamics.

(a) We study the propagation of weak energy distur-
bances and compare their behavior with the expectation
from the linearized hydrodynamics for propagation as
second sound [2,3].

(b) We compare details of the evolution of the structure
of temperature pulses with our expectation of the
influence of phonon viscosity [5].

These experiments show the lattice Boltzmann compu-
tational apparatus to reliably describe the hydrodynamic
behavior of the phonon gas. The satisfactory outcome of
these experiments gives us confidence in using the LBA
to look at the phonon gas under extreme conditions.

(c) By controlling the phonon-phonon collision rate we
look in detail at the collision process as it assembles an
initial disturbance into a second sound pulse.

(d) We examine the motion of a temperature distur-
bance that drives the system far from linear response and
we examine the influence of the phonon-phonon collision
rate on the tendency of nonlinear disturbances to form
shocks.

(e) We study the propagation of a weak energy distur-
bance in the presence of a steady heat current to look for
the unusual behavior found from the nonlinear hydro-
dynamics of Coleman and co-workers [7]. (Coleman and
co-workers predict that a temperature pulse will move
faster against the direction of a heat current than it will
with a heat current.)

We summarize our findings in Sec. V. Some details of
the eigenvalue problem associated with the collision
operator are found in Appendix A. Details associated
with the conservation laws, the use of local equilibrium
distribution functions, and the relaxation time approxi-
mation are found in Appendix B.

II. PHONONS

Consider a typical dielectric crystal (or liquid *He) at
low temperature. The elementary excitations of the crys-
tal are the thermally excited transverse and longitudinal
phonons. Let us imagine that the crystal is perfect,
without isotopic or other impurities, so that the funda-
mental interactions among the phonons are the three-
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phonon processes due to cubic anharmonicity. We wish
to have a lattice Boltzmann description of this phonon
gas that is faithful to its essential physics. For illustrative
purposes we use a two dimensional example.

Take the space in which the phonon gas resides to be
covered with hexagons as shown in Fig. 1(a). Each site is
located with a vector X, ,=ma,+na,. We denote these
vector locations generically by x. At each site there are
12 states for the phonons, six transverse states and six
longitudinal states. We label these states by o =0,1 for
transverse and longitudinal and by e, . .., e, the direc-
tions of motion of the phonons. See Fig. 1(b).

The energies of the phonons in the six transverse (lon-
gitudinal) states are €/2 (€). Both the six transverse and
the six longitudinal phonons carry the same magnitude
momentum p =#k in the six vector directions e, . . . , €.
As all of the phonons, both longitudinal and transverse,
carry the same magnitude momentum but have energies
differing by a factor of 2 we have ¢; /cp=2.

We describe the states of a site x at time ¢ by specifying
the 12 phonon distribution functions (more properly the
expected number of phonons in the states) with

R(x,t;€,,¢;), (1)

wherei =1,...,6,and ¢,=€/2, and €,=e€.

e1=(1,0)

€5 .
(b) €6 e2=(0.5,-0.886)
eq er e3=(—0.5,-0.866)
- i es=(-1,0)
es=(~0.5,0.866)
e
€3 2 e6=(0.5,0.866)

FIG. 1. Geometry. (a) The physical space is covered with
hexagons (sites) that are denoted by the pair of integers that de-
scribe their location in terms of the vectors (1,0) and
(0.5,0.5X V'3). There are six directions (states) for longitudinal
and transverse phonon momentum at each site denoted by vec-
tors ey, . . . ,&¢. These vectors are shown in (b). In one time step
the discrete translation operator carries the phonon distribution
function for the state ¢; at site x to the state ¢; at site x+e¢; for
a transverse phonon or to the state e; at site x+2e; for a longi-
tudinal phonon. This is illustrated in (a): the longitudinal pho-
nons in state e, at site (0,0) go to state e, at site (2,0); the trans-
verse phonons in state e at site (0,0) go to state e at site (0,1).
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The lattice Boltzmann rule for time evolution of the
system is a rule for the motion of the phonon distribution
functions. We take this rule to be

T,,R(x,t;€,,e;)=R(x,t;€,,€;)

OR (x,t;€,,¢€;)

ot , 2)

collision

where

At—a— +aae,~‘v

T;,=exp EY

is the space-time translation operator. Here a,=a (2a)
for transverse (longitudinal) states; a is the distance be-
tween adjacent hexagon centers. The longitudinal pho-
nons move twice as far as the transverse phonons in time
At; see Fig. 1.

For the rate of change of R (x,?) due to collision we
take the collision operator appropriate to the three-
phonon collision processes shown in Fig. 2; transverse:

3R
o1 c= WP=wAt[N; _(1+M,)(1+M,_,)
+N; (1+M;)(1+ M, ,)
—MM,;_,(1+N,_,)
—MM; ,(1+N,; )], (3)
longitudinal:
oR/

=W!=wAt[M, . ,M,_,(1+N;,)

e

ot
—Ni(1+Mi+1)(1+Mi-l)] y (4)

where w is a microscopic collision rate and the direction
index is read modulo 6. [We adopt the following nota-
tion: R is a generic distribution function; when longitudi-
nal and transverse distribution functions are explicitly ex-
hibited in an equation we use M for transverse and N for
longitudinal. Here M; and N; are shorthand for
M(1;e/2,e;) and N (1;€,e;). It is sometimes useful to use
R7; R?’=M,; and R!=N,. A generic space-time point
(x,t) is denoted 1, R (x,2)=R (1).] Equations (2)—(4) are
a complete set of rules for time evolution of the phonon

N(L+M)(1+M)  — MM(1+N)

FIG. 2. Phonon collision processes. The cubic anharmonici-
ty leads to three-phonon collision processes. Longitudinal pho-
nons break up into two transverse phonons (on the left) or are
created by two transverse phonons (on the right). The net rate
of change of the number of longitudinal phonons is the
difference between these two processes.
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distribution function.

When the phonon gas at all sites is at ambient tempera-
ture characterized by f, it is in strict thermal equilibrium
(11],

Rf=——, Vi. (5)

! B()Eo

The phonon gas is in local thermal equilibrium when R °
is given by
1

Ro(1)= it e Y ©)

where B(1) is inverse of the temperature at 1 and u(1) is
the drift velocity at 1. This distribution function is a lo-
cal equilibrium distribution function in that if all of the
phonon distribution functions for the states at a site have
R 7 given by Eq. (5), with the same value of B and u, the
collision operator causes no rearrangement of the pho-
nons among the states. The quantities B(1) and u(1) are
termed the local equilibrium variables as their values
determine the local equilibrium distribution function.

For the strict equilibrium distribution function given
by Eq. (5) or the local equilibrium distribution function
given by Eq. (6) the collision operator causes no change.
The collision operator operates independently at each
site. The temperature and drift velocity at a site charac-
terize the local equilibrium distribution function and
therefore the energy and momentum at the site. Thus
B(1) and u(1), the local equilibrium variables, are suitable
for description of the hydrodynamic modes of the pho-
non gas.

The computational rules exhibited above will be useful
to us if we can establish that they capture the essential
physics we believe is appropriate to the behavior of the
system. This physics is referred to as phonon hydro-
dynamics. Demonstration that the appropriate hydro-
dynamic equations follow from the computational rules is
the subject of Sec. III. To fix notation and prepare for
Sec. III we describe several approximations to the com-
putational rules.

(a) The Boltzmann approximation to the translation
operator. We write

T,U—let%—%aaei'VEAt.[ . (7)
The discrete translation of the computation rule ap-
proaches Boltzmann translation, L, for
At—0,a,/At—c,.

(b) The linear approximation to the collision operator.
We expand W? and W} in terms of the departure of R’
away from strict thermal equilibrium. We use
AM =M —P, and AN =N —Q, where Py=1/(e*"?>—1)
and Q,=(1/e*—1) to write

[
i

At

=3 wAd,, Aj7AR] . (8)

jo’

Here AR°=AM, AR '=AN,
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AN=8,,,,+28,,+8,, ,,

A?,‘1=A.!19= _(5,',:+1+5j,i—1) ’
11—

All=s,,,

All =A01 =1+2P0, and A4 0= Aw=P0—Qo.
(c) The relaxation time approximation to the collision
operator. The collision operator is replaced by

—%[R(l;ea,e,-)——E(B(1),u(1);e¢,,e,~)], ©)
where R(B(1),u(1);€,,¢;) is a local equilibrium distribu-
tion function. It is characterized by B(1),u(1), the local
equilibrium variables, that are found from the energy and
momentum at site 1. Some details involved in carrying
out this procedure are shown in Appendix B.

III. CONSERVATION LAWS

In this section we show that in suitable approximation
to the lattice Boltzmann computational rules, Egs.
(2)-(4), the known hydrodynamic equations for the pho-
non gas are recovered. In making this demonstration we
uncover the conditions that circumscribe the connection
between the computational rules and physical behavior.

The hydrodynamic equations for a system describe its
behavior for small fluctuations away from equilibrium
that vary slowly in space and time. Thus we consider the
computational rules using (a) the Boltzmann approxima-
tion to the displacement operator, Eq. (7), and (b) the
linear approximation to the collision operator, Eq. (8).
The linearized phonon Boltzmann equation is schemati-
cally

LAR(1)=—@€,(1)AR (1), (10)

where we have explicitly inserted the argument 1=x,7 to
emphasize that the collision operator operates on the
phonons at a site. It is from analysis of this equation that
we derive the hydrodynamic equations.

Treatment of Eq. (10) initially focuses on the collision
operator, Eq. (8). Because 4,7 A4, it is not symmetric
in Jjo<jo'. It is _made symmetric by using
r"=\/AWR", F"=\/AWIT", and Ar”=\/AMAR”.
Then

'LiaAria= - 2 @;']jU’ArJq’ ’ (11)
j’a,

where
ago’ — ago’
@ij wa oo’ A‘] >

ag= A, a9y =a,g=V Ag Ay, and a;,= A,,. The vir-
tue of this form of the equation of motion for the distri-
bution function is that the collision operator @ is a real
symmetric operator. As such it defines an eigenvalue
problem,

én,= Ay,

with desirable properties, e.g., a complete orthonormal
set of states with a real non-negative eigenvalue spec-
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trum. We use this complete set of states to study Eq.
(11).

The most important properties of the eigenvalue prob-
lem defined by € follow from physical argument. Pho-
non distribution functions of the form of Eq. (6), in which
the temperature and drift velocity are the same for all
phonons at a site, are unchanged by the collision process.
They are local equilibrium distribution functions. Thus
these distribution functions can be constructed from vec-
tors that reside in the null space of the collision operator.
(The null space of € is the set of eigenvectors with eigen-
value zero.) The form of these vectors can be found from
examination of the effect of the collision operator on the
local equilibrium distribution function. We find them by
this method in Appendix A. They are

Nol€,r€,)=C, 2‘/:_005,,,0+ ‘/‘;“ 801 s (12)
nly(ea,e,-)=C1(e,-)y[—1:8,,,04';—50,1 :
VA Vi,
vy=x,y; 13)

C, and C, are normalization constants. The local equi-
librium distribution function is a function of the local
value of the temperature, B,+8B(1), and the drift veloci-
ty, u(1). It is able to be expressed as a function of the
vectors 7, 1y, and 7,, that reside in the null space, and
of the hydrodynamic variables, in the form

AF()=4,(D[0)+ 3 A441)B), (14)
B=1,2
where A(1) is shorthand for A(B(1),u(1)). Here we use
the notation 7,=[0), 7,,=|1y). The amplitudes
Ao(1), Ag(1) are functions of the local equilibrium vari-
ables. In linear approximation to the departure of A7
from strict equilibrium Ay(1)x8p(1) and
A,,(1)=u,(1). To nonlinear order in 8(1) and v(1) the
amplitudes, 4, and A4g, are more complicated functions
of the local equilibrium variables. An illustration of this
is provided in Appendix B.
The physical quantities of interest in discussing the
conservation laws and physical phenomena are the ener-
gy and momentum at each site in the system:

AE(1)=3 €,AR (1;¢,,¢;) , (15)
AP7(1)=2p(e,~)YAR(l;eo,e,-) . (16)

Using Ar°=1/4,,AR and comparison with Egs. (12)
and (13) shows that to within a numerical factor AE (1)
and AP, (1) are found from projection of Ar onto the vec-

tors [0) and [1y). We define a scaled energy and
momentum by
Ae(1)=(0|Ar(1)) , (17)
Ap, (1)=(y|Ar(1)) . (18)

We term Ae (1) and Ap(1) the hydrodynamic variables of
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the phonon gas. [In using this language we are making a
distinction between the hydrodynamic variables and the
local equilibrium variables, see below Eq. (6), that is im-
portant when we consider nonlinear phenomena. For
linear disturbances 88(1) < Ae (1) and u(1) =< Ap(1).]

The conservation laws are found by multiplying Eq.
(10) by energy and momentum and summing as in Egs.
(15) and (16). We show in Appendix A that the eigenval-
ue problem involving the linearized three-phonon col-
lision operator has a null space with six vectors. There
are three vectors associated with energy and momentum,
those given by Egs. (12) and (13), and three vectors that
represent highly nonuniform phonon density at a site.
(Difficulties of this kind are well known in this context
[10]). The problem is caused by the coarse graining of
momentum space. Because of the geometry and
¢y /cr=2 there are pathological configurations of the
phonons that have A =0, i.e., that are not degraded by the
three-phonon collision process. (We will see evidence for
the existence of these phonon configurations in one of the
illustrative numerical examples described in the next sec-
tion.) Qualitatively similar nonuniform phonon densities
are possible in the description of real phonon systems.
However, in such systems the amount of momentum
space for these nonuniform configurations is vanishingly
small. Here the lattice Boltzmann coarse graining of
momentum space has emphasized their presence. We can
in principle “solve” this problem by introducing addi-
tional collision processes. Our concern is not simply with
getting to the Navier-Stokes equation [10]. Thus we look
to the Hamiltonian for guidance [2,12]. It admits (a)
three-phonon processes that do not conserve momentum,
the umklapp processes, (b) four-phonon processes,
I +t—1+t, and (c) higher order processes. All of these
collision processes occur at rates that are controlled by
the temperature. Thus as T—0, i.e., w —0, the umklapp
processes, the four-phonon processes, etc. disappear rela-
tive to the three-phonon momentum conserving process-
es. As we wish to employ the LBA as T—O0 the higher
order phonon processes are not a valid “solution.” To
avoid these difficulties in the present context we replace
the exact collision operator (or its linearized version) by a
relaxation time approximation, Eq. (9).

The physical idea behind a relaxation time approxima-
tion is that at each moment of time, at each site x the
phonons have total energy e(x,t) and total momentum
p(x,t). If the phonon distribution functions at x were
given by the local equilibrium distribution function, Eq.
(6), that gave rise to e(x,?) and p(x,?), then the collision
operator would cause no rearrangement of the phonons.
It is departure of the phonon distribution functions from
this local equilibrium distribution function that causes
the collision process to work. Thus we write

oR;,
ot

_1
;

[R(l,e;0)—R(l,e;0)] . (19)

c

The computation rules now become Egs. (2) and (19).
Demonstration that this approximation treatment of

the collision operator leads to the conservation laws is

given, for example, in Guyer and Krumhansl. What one
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finds upon working out the conservation equations to
leading order in the relaxation time (this means drop 7.£
compared to 1) is the equations of hydrodynamics that
are independent of transport coefficients. These are the
terms with which we are principally concerned. [In Ap-
pendix B we work out the hydrodynamic equations to
second order in the local equilibrium variables for the lat-
tice Boltzmann description of the phonon system. The
resulting equations are Egs. (B14) and (B15). In Appen-
dix B we also exhibit the hydrodynamic equations to
second order in the hydrodynamic variables.] We do not
describe details of finding the hydrodynamic equations to
higher order in 7.£. Their treatment, in relaxation time
approximation and more elaborately, is also given by
Guyer and Krumhansl. A Navier-Stokes equation for the
phonon gas is found. We establish a Navier-Stokes equa-
tion for the phonon gas described by the LBA by doing a
numerical experiment that looks at the evolution of the
structure of a temperature pulse.

IV. RESULTS

In this section we describe the results of a series of nu-
merical experiments on the behavior of a phonon gas car-
ried out using the LBA described above. The first of
these demonstrates that the system behaves as we expect.
It shows behavior in agreement with linear hydrodynam-
ics. We then explore the behavior of the phonon gas
away from linear hydrodynamics.

The phonon system is taken to be the system described
by the following computational rules.

(1) The discrete translation rule of Eq. (2).

(2) The relaxation time approximation to the collision
operator, Eq. (9). [The local equilibrium distribution
function required to implement Eq. (9) is determined by
the procedure described in detail in Appendix B.] The
parameters that characterize the ambient conditions of
the phonon gas are described as follows.

(a) Strict equilibrium: B=p;,u=0 Vx, i.e., the ambient
temperature of the phonon gas is uniform; it has no drift
velocity. The phonon distribution function is the strict
equilibrium distribution function of Eq. (5) that is un-
changed by the collision operator.

(b) A choice of the phonon collision rate w. In practice
this rate is a function of physical variables that describe
impurities, dislocations, and other features of a particular
phonon system under study. Here we are using the cubic
anharmonicity, common to all systems, that depends on
atomic forces at work between the atoms [12]. In the re-
laxation time approximation the rate for this process
would be a function of temperature. To avoid dealing
with particular models of the collision process we take w
to be a parameter that we vary through values that corre-
spond roughly to T <®p /10, where ®, is the Debye
temperature.

(c) As matters of principle are involved we work in
d =2 with disturbances that are one dimensional.

(d) We disturb the system away from its equilibrium
state and observe the response.

Example 1. At By=1,u=0,w =0.1 we disturb the sys-
tem at x =0 at t =0 with $=0.9, i.e., an energy pertur-
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bation or temperature perturbation at the origin. (Here
and throughout we use €é=1 so that the values of B are
really values of Be.) We show in Figs. 3(a) and 3(b) the
energy perturbation, in units of the ambient temperature,
i.e., ByAe of Eq. (17), as a function of position at various
times after t =0. The horizontal axis in these figures is a
distance away from the location of the perturbation,
x =0, in units of hexagons; it is the site number. Time is
measured in units of Az. [In one time unit a transverse
phonon moves one hexagon unit (one site) and a longitu-
dinal phonon moves two hexagon units (two sites) as in
Fig. 1(a).] In Fig. 3(a) we show the results for t =10 and
25 time units and in Fig. 3(b) we show the results for
t =40, 60, 80, and 100 time units. Let us begin by look-
ing at Fig. 3(a) for the early time response. The initial
disturbance creates transverse and longitudinal phonons
at the origin that are out of thermal equilibrium. The
collision rate, w =0. 1, is quite low and we see that at ear-
ly times the disturbance has not thermalized. For exam-
ple, at t =10 there is an energy spike at x =120 corre-

0.025

(a)

0.015 0.020
T

energy
0.010
T

0.005

—0.005 0.000

-60 -40 —20 0 20 40 60

0.007

(b)

0.005

energy
0.003
T

£=100

0.000

L L 1 L L L 1

160 —120 -80 —40 0 40 80 120 160
site

70.003

FIG. 3. Energy fluctuation as a function of position. For the
conditions of example 1, B,=1,8=0.9,u =0,w =0.1, the dis-
turbance is at x=0at t =0. (a) The energy fluctuation is plotted
as a function of site number for t =10 and 25 time steps. (b)
The energy fluctuation is plotted as a function of site number
for ¢ =40, 60, 80, and 100 time steps. The filled squares show
the expected location of a second-sound pulse.
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sponding to longitudinal phonons that are in ballistic
flight away from the origin and have had no collisions.
There are similar features at x =110 due to ballistic
transverse phonons traveling in the tx direction and
ballistic longitudinal phonons traveling at +60° of the +x
axis. Even transverse phonons traveling at +60° of the
+x axis are seen at x =+5. If we look at longer times,
t =25, we see that these ballistic features have been de-
graded by collision. As this degradation proceeds, the
background of scattered phonons increases. In this figure
we have indicated with filled squares the location at
which the energy perturbation would be found if it trav-
eled as a hydrodynamic mode, i.e., a second-sound pulse.
It is toward the locations appropriate to the hydro-
dynamic mode that the phonons are being driven by the
collision process.

Upon looking at Fig. 3(b) we see that as time
progresses (¢t =40, 60, 80, and 100) the collision process
assembles the energy perturbation into the second-sound
hydrodynamic mode. There are still some phonons that
appear to be ballistic. (The choice w =0.1 was made so
that there are a few such phonons to serve as a time
marker.) The result expected from phonon hydrodynam-
ics, Eq. (B16) from Appendix B, yields c, /c; =0.443 for
Bo=1, where c, is the second-sound velocity. Thus at
t/At =M energy traveling as the second-sound mode
should be at

X =0.886M .
a

It is this expected location for the energy fluctuation that
is shown by filled boxes on the horizontal axis. The ener-
gy perturbation is traveling at the second-sound velocity.

As the energy perturbation moves further from the ori-
gin it decreases in amplitude and broadens. These phe-
nomena are due to the finite rate of collision among the
phonons or to terms in the hydrodynamics that are
beyond the leading terms that follow from energy and
momentum conservation. The hydrodynamic equations
discussed above and worked out in Appendix B, Egs.
(B14) and (B15), have only the leading terms, those that
do not involve the collision rate. Guyer and Krumhansl
have worked out the hydrodynamics for a one component
phonon gas (one polarization of phonon) to order 7.£L7.L.
We will use their results to get an idea about the effects of
collisions.

Guyer and Krumhansl find that the leading corrections
to the equation for the energy current Q (essentially the
momentum conservation law) lead to a Navier-Stokes-
like equation of the form

9

ot
where <c2/w is a phonon viscosity. This term is re-
sponsible for Poiseuille flow of a phonon gas and in an en-
ergy or temperature pulse it is responsible for the pho-
nons’ random walking relative to the center of the mov-
ing pulse. Thus the temperature pulse should become
broader as V't /w and decrease in height as Vw/t. We
test this expectation for the behavior of the temperature
pulse in example 2.

<= q[V-VQ+2V-«(V-Q)], (20)
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Example 2. At By=1,u=0 Vx we disturb the system
at x =0 at t =0 with §=0.9. We look at the behavior of
the energy perturbation for various collision rates and at
various times. See Figs. 4(a)-4(c). As illustration of the
influence of the strength of the collision rate we show in
Fig. 4(a) the right hand going pulse at t =40 for values of
the collision rate varying from 0.20 to 1.40. To show
how an energy pulse spreads as time goes on we show, in
Fig. 4(b), the right hand pulse for w=0.20 at
t =20,30,40,60,80,100. To construct this figure from
the data we have translated the energy pulses back to-
ward the origin by [(second-sound velocity) X (time)] so
that they overlap and the pulse spreading with the dura-
tion of flight will be apparent. From these and similar
data we have measured the pulse height and pulse width.
To test the expectation
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we have plotted the measured height and width of the
temperature pulses as a function of w /¢ in Fig. 4(c). (The
scales in the figure are log,y-log;o.)

The data in this figure involve various values of w and
t. It is apparent that ¢t/w <t is a good variable for
describing both the height and width of a temperature
pulse. The solid lines in the figure are guides to the eye of
slope +1 and —1. The expectations of Egs. (21) and (22)
are borne out.

We take the results of examples 1 and 2 to establish
that the lattice Boltzmann model behaves as the linear
hydrodynamics of the phonon gas would have it behave.
It carries energy fluctuations as a second-sound mode.
This mode is broadened by the viscous processes that
operate like those described by a Navier-Stokes equation.
This phonon gas would carry heat current via a Poiseuille
flow mechanism. With some sensitivity to its shortcom-

height) < V'w /t 21 . . .
(height) _/ ’ 2 ings (for example, watching that the collision rate
(width) < V't /w , (22)  thermalize the phonons) we have confidence in using the
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FIG. 4. Energy fluctuation as a function of position. For the conditions of example 2, B,=1,8=0.9,u =0, the disturbance is at
x=0 at t=0. (a) The energy fluctuation is plotted as a function of site number at t =40 for values of the collision rate
w=0.1,0.2,0.4,0.6,0.8,1.0,1.2,1.4. The vertical line at site 35 is the expected location of the second-sound pulse. (b) The energy
fluctuation is plotted as a function of site number, collision rate w =0.2, for t =20,30,40,60,80,100. Each of the six curves has been
shifted back toward the origin by the distance the disturbance would propagate as a second-sound pulse. In (c) the pulse height (open
symbols) and half-width (filled symbols) are plotted as a function of %txt/w for a variety of conditions: stars
(w=0.15,t =60,80,100), triangles (w=0.2,t =40,60, 80, 100), circles (w=0.4,r =15,20,30,40,60,80), squares
(w=0.2,0.4,0.6,0.8,1.0,1.2,1.4,t =40). The two solid lines are guides to the eye of slope +0.5.
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LBA to do experiments on the phonon gas away from the
circumstances that let us anticipate its behavior. Howev-
er, before going on we back up to look at the collision
operator and the relaxation time approximation.

In Sec. III in trying to give a sound analytic demon-
stration that the computational rules reduced in ap-
propriate limits to hydrodynamics we started with the ex-
act phonon collision operator. We were turned away
from just plugging ahead when we saw that the null space
of the collision operator had more modes than there were
conserved quantities. This meant that a pathological hy-
drodynamics might (certainty would?) result. We adopt-
ed the relaxation time approximation to avoid difficulties
we did not know how to handle. To illustrate what was
going on let us look at the behavior of a LBA that uses
the exact collision operator in place of the relaxation time
approximation. Thus we take the system to be described
by Eq. (2) and Egs. (3) and (4).

Example 3. At B,=1,u=0,w =0.1 we perturb the sys-
tem at x =0 at ¢t =0 with £=0.9. In Fig. 5 we show the
amplitude of the energy perturbation as a function of po-
sition for ¢t =10, 20, 40, and 80. This figure should be
compared to Figs. 3(a) and 3(b). The comparison is strik-
ing. We see the second-sound mode being assembled al-
most where it should be. The second-sound mode travels
at almost the right speed, broadens as it travels further,
etc. as we have come to expect. [As in Figs. 3(a) and 3(b)
the filled boxes are the expected location of the second-
sound mode.] However, we also see an energy spike at
x =ct that does not go away. Once established this
feature translates at velocity ¢y without further change.
This feature is the evidence of the presence in the opera-
tion of the LBA of the pathological states that are in the
null space of the collision operator. It was our unwilling-

0.10 0.15 0.20

energy

0.05

0.00

—0.05

~120 -80 -40 0 40 80 120
site

FIG. 5. Pathological energy propagation. The energy fluc-
tuation is plotted as a function of site for the conditions of ex-
ample 3; B,=1,=0.9,u =0,w =0.1, the disturbance is at x=0
at t =0. The four curves correspond to t =10,20,40,80. The
initial disturbance is propagated according to the computational
rule that includes exact treatment of the phonon collision opera-
tor. These results should be compared to those in Fig. 3 that re-
sult from use of the relaxation time approximation. The filled
squares show the expected location of a second-sound pulse.
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ness to have these states present or to remove them by
artificial means that led us to retreat from the exact col-
lision operator to the relaxation time approximation.

Now let us look at the phonon gas in more trying cir-
cumstances. As a first example we consider two extreme
cases of energy pulse propagation: (a) near-ballistic pulse
propagation because of weak phonon-phonon collisions
and (b) near-“shock” pulse propagation because of strong
phonon-phonon collisions and large initial disturbance.

Example 4(a). At B,=1,u=0, we perturb the system
at x =0 at t =0 with $=0.9. We look at t =40 as we let
the collision rate vary from very weak, w =0.05, to
reasonably strong, w =0.60. The results are shown in
Fig. 6(a). At the lowest collision rates ballistic phonons
are seen at sites 20, 40, and 80. There also are pro-
nounced backgrounds: (1) longitudinal phonons from the
location of the furthest forward longitudinal phonon at
x =0.80 to the region of excess transverse phonons at
x =40 and (2) transverse phonons at x <40. The funda-
mental events taking place to cause the evolution of the
initial disturbance are collisions of the phonons in the en-
ergy fluctuation with the phonon in the ambient phonon
gas. As the collision rate is increased, the dominant pho-
nons, the ambient transverse phonons, exert their
influence on the phonons in the energy perturbation and
assemble them into a temperature pulse. The vertical line
near site 35 in the figure is the expected location for a
second-sound pulse.

It is the ambient phonons that work through the col-
lision process to assemble the energy perturbation into a
second-sound pulse. This process works well when there
are lots of ambient phonons, compared to the number in
the energy perturbation, and when the collision rate be-
tween these two groups of phonons is large. What hap-
pens as the size of the energy perturbation is increased?

Example 4(b). At By,=1,u=0, we perturb the system
at x =0 at t =0 with S=0.1. (The initial temperature
disturbance is ten times as large as the ambient tempera-
ture.) For two large values of the collision rate, w =1.0
and 1.75, we look at the energy perturbation as a function
of time, t =10, ...,70. See Fig. 6(b). We use relatively
large values of w so that the energy perturbation will re-
tain its integrity as it moves. Even for the largest w the
energy perturbation is down to roughly one-half of the
ambient energy at ¢t =10. For both w =1.0 and 1.75 the
energy pulse has a sharp front edge early in time; it is an
incipient shock pulse. The dramatic influence of the col-
lision rate is seen as the pulse travels. The pulse does not
develop into a shock wave but is slowly rounded and de-
graded toward second-sound pulse appearance. This evo-
lution is complete for the w =1 pulses by ¢t =~50. It still
has some way to go at t =70 for the w =1.75 pulses.

In the limit of low collision rate or for large-amplitude
disturbances it is difficult to follow the evolution of the
phonon gas by analytic means. The advantage of the
LBA is apparent.

As a second example of use of the LBA to examine the
behavior of the phonon gas we consider the experimental
situation discussed by Coleman and co-workers [7]. We
want to examine the behavior of an energy perturbation
in the presence of a steady heat current.
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Example 5. We establish an ambient phonon gas that
has uniform temperature, B,=1, and carries a steady heat
current from left to right. The strength of this heat
current is varied from O to lvol =0.40. We fix the col-
lision rate at w =0.2. At ¢t =0 at x =0 we introduce an
energy perturbation, 5=0.9. This energy perturbation
has been carefully designed so as not to introduce net
momentum into the phonon gas. We study the propaga-
tion of this energy perturbation upstream (against the
steady heat current, i.e., to the left) and downstream
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FIG. 6. Nonlinear energy fluctuations. In (a) the energy fluc-
tuation is plotted as a function of site for the conditions of ex-
ample 4(a); Bo=1, f=0.9, u =0, and ¢t =40. The collision rate
varies from 0.05 to 0.04; 0.05,0.10,0.20,0.30,0.40. The expected
location of the second-sound pulse is indicated by the vertical
line. In (b) the B=0.1 energy fluctuation is plotted for seven
values of the time, ¢ =10, 20, 30, 40, 50, 60, and 70. The initial
conditions are those of example 4(a); By,=1,8=0.1,u =0, the
disturbance is at x=0 at t =0. Results for two values of the col-
lision rate are shown; the taller curve at each time corresponds
to w=1.75, the shorter curve at each time corresponds to
w =1.0. (Because of the choice of length scale and time scale an
energy pulse in flight for 40 time units is near site 40.) Compare
the energy scale here with that in other examples, e.g., Fig. 3;
the initial disturbance used here is very large. The collision
rates used here are also very large so that the energy pulse re-
tains its integrity and the evolution of “shocklike” features can
be followed.

R. A. GUYER 50

(with the steady heat current, i.e., to the right). The re-
sults are shown in Figs. 6(a) and 6(b). In this figure the
energy perturbation at ¢t =100 is shown, 0.0 <v, =0.40.
At v, =0 the energy perturbation is well established as a
second-sound pulse. Recall w =0.2. As v, is increased,
causing a heat current to flow to the right, the right hand
going temperature pulse is pushed more rapidly to the
right, seemingly toward the velocity of the transverse
phonons. The left hand going pulse is slowed by the heat
current against which it is moving. The left hand going
pulse is much more noticeably influenced by the heat
current than the right hand going pulse. (The heat
current values used here become unphysical at vy>0.1.
To illustrate matters of principle we use values of v,
larger than 0.1.)

A first conclusion is possible.

(1) Coleman and co-workers show that a heat current
will propagate against the uniform flow more rapidly
than it will propagate with the flow. This prediction is

0.004

(a)

energy
0.002

0.000

70.002

150 -100 -50 0 50 100 150
site

0.8

t=100

0.7

0.4 0.5
o

(max shift / tvo)

0.3

upstream (open)

L downstream (filled)

0.1

0.0

-2.0 -1.0 0.0
logio(vo)

FIG. 7. Energy fluctuation as a function of position with
0. For the conditions of example 5, B8,=1,8=0.9,w =0.2,
the disturbance is at x=0 at # =0. (a) The energy fluctuation as
a function of site at ¢ =100 for v,=0,0.1,0.2,0.3,0.4. In (b) the
shift in the position of the left and right hand going pulses from
(a) is shown as a function of v, in the form of (shift in position
of the pulse maximum)/vyt.
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contrary to what we observe.

(2) As v, is increased we see that the right hand going
energy perturbation becomes steeper and acquires shock-
like features.

In Fig. 7 we show the behavior of the drift velocity of
the right hand and left hand pulses as a function of v,.
The points plotted in this figure are the location of the
maximum of the energy perturbation. To make it clear
that the energy perturbation drifts with the ambient heat
current we have plotted the ratio (shift in the position of
the maximum in the energy perturbation)/v,t against v,.
It is clear that only at the most modest values of v is the
drift velocity strictly proportional to v,. Nonlinear
effects show up at values of v, of order 0.10. The value of
the drift velocity found by this simple analysis of the
maximum in the energy fluctuation is (drift
velocity) =0.4v,. The result in Eq. (B17) yields (drift
velocity) =0.5v,. Given the crudeness of our analysis of
the data we regard this agreement as reasonable.

In this section we have looked at several examples of
the use of the LBA to see the behavior of the phonon gas.
Two of these examples let us establish that the LBA reli-
ably reproduced the hydrodynamics of the phonon gas.
Two of them let us illustrate use of the LBA to look at
phenomena that are not easily examined by analytical
means.

V. CONCLUSION

In this paper we have developed and employed a lattice
Boltzmann computational apparatus for numerical stud-
ies of the phonon gas. This LBA describes a phonon gas
with two phonon polarizations that interact through en-
ergy and momentum conserving three-phonon collisions,
i.e., cubic anharmonicity. Prior to employing the LBA
we demonstrated that in suitable approximation the com-
putational rules led to the known equations of phonon
hydrodynamics. In carrying through this demonstration
we encountered problems with the three-phonon collision
operator. Our interest is in the phonon gas both in the
strong collision limit, when it is described by a Navier-
Stokes equation, and in the weak collision limit, when
ballistic phonons are present. To handle this broad range
of conditions simply we modified the three-phonon col-
lision rules, replacing them by a relaxation time approxi-
mation. It is the resulting computational rules that re-
duced, for slowly varying long wavelength disturbances,
to linear phonon hydrodynamics in relaxation time ap-
proximation.

To confirm that the computational rules were working
well we studied the behavior of the second-sound mode,
the fundamental mode of the linearized phonon hydro-
dynamics. We used the computational rules to follow the
propagation of weak temperature disturbances. These
disturbances, temperature pulses that started at the ori-
gin, were found to translate at constant velocity, i.e., they
were a superposition of nondispersive temperature waves.
Their velocity was in agreement with the prediction of
the linear phonon hydrodynamics for the second-sound
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mode. In addition we studied the evolution of the struc-
ture of the temperature pulse and confirmed that the
computational rules reliably described the effect of the
phonon viscosity.

We studied the phonon gas, using the computational
rules, in three examples in which the phonon gas was well
away from the conditions appropriate to linearized pho-
non hydrodynamics; (1) in the limit of weak phonon-
phonon collisions, (2) in the limit of strong collisions and
nonperturbative temperature disturbances (i.e., in near-
shock conditions), and (3) for a perturbative temperature
fluctuation in the presence of a steady heat current.
These computer experiments were primarily intended to
illustrate the power of the LBA in describing the phonon
gas for a broad range of conditions.

The third example was chosen to test the interesting
prediction for behavior of a temperature pulse by Cole-
man and co-workers. For this case we regard the result
of running the LBA as the result of the relevant experi-
ment. We found, in disagreement with Coleman and co-
workers, that the temperature pulse moved more rapidly
in the direction of the heat current than it did against the
heat current. Treatment of this circumstance with the
appropriate extension of linear phonon hydrodynamics
confirms this experimental finding and confirms the size
of the shift in second-sound speed. The results of Cole-
man and co-workers result from a set of equations that
are qualitatively different from those we find, see Appen-
dix B. In particular, Coleman and co-workers use an en-
ergy conservation equation, developed to second order, in
conjunction with a heat current equation, the Cattaneo
equation, that is first order. Both the energy equation
and the heat current equation in Appendix B have impor-
tant second order terms.

The set of computational rules we have used to con-
struct a LBA for the phonon gas lend themselves easily to
generalization to more complex circumstances. We
present the following examples.

(1) Phonon collision processes that do not conserve
momentum, e.g., scattering from impurities or umklapp
scattering, are accounted for by an additive collision
operator (or relaxation time) that does not conserve
momentum.

(2) Phonon motion through a complex environment, as
in a crystal with boundaries, is handled with a mask that
keeps track of hexagons in inaccessible regions of space.

It is apparent that the method discussed here for the
two component phonon gas could also be used, with
slight modification, to describe the phonon-roton gas in
liquid “He and a variety of similar systems. The LBA
developed here should let us do experiments on models of
a variety of physical systems that will broaden our under-
standing of these systems and enhance their usefulness as
a testing ground of principles and as a tool for investiga-
tion.

APPENDIX A: THE COLLISION OPERATOR

The phonon collision operator appropriate to the pro-
cesses shown in Fig. 2 is
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oM; |  WJ[M,N] with
ad |,  wAr ap=Ay ,
:Ni—l(l+Mi)(1+Mi—2) amzal():\/AooA“ s (A11)
TN (1+M)(1+ M, ) an=4y .

—M;M;_,(1+N;_))
—MM; ,(1+N; ),

W/[M,N]
wAt

N, |
ar |,
=Mi+lMi—1(1+Ni)_Ni(l+Mi+l)(1+Mi—l) .

(A2)

For M=P, and N=Q,,W?[Py,,0,]=0 and
WPy, Q,]=0. Linearizing W in terms of departure
from strict equilibrium, i.e., in terms of AM =M —P,
and AN =N —Q,, we find

W AM,AN]=wAt[ Ay (AN, ,+AN,_,)
— Ag(AM, . ,+2AM;+AM; _,)]

(A3)
and
W AM,AN]=wAt[— A ,AN;+ 4 ((AM, , |+ AM,_,)],
(A4)
where
Ap=A410=Py—Q (AS)
and
Aypy=A,,=1+2P,; . (A6)
This operator can be written in the form
W5 =whtd,, A, (A7)
where
A89=6j_,-+2+26j,,~+8j,,-_2 ,
A =AR=—(8;; 41 +8,,_1), (A8)

11—
Ajj=8;; .

Because the off diagonal terms are unequal, Ay 7 4,
the operator W is not symmetric in i,0«>j,0'. W is sym-
metrized by  using AM=Am/V A and
AN=An/V A,;. We denote Am and An by Ar?,0=0,1
corresponding to m, n, respectively.

In terms of the symmetrized collision operator the

right hand side of the linearized Boltzmann equation is

.2, @g-" Arf (A9)
5o
where
oo’
1) . ’
war 90w AT (A10

The eigenvalue problem associated with @ is solved by
standard methods. Use

v (m,0)=b_e"™"", (A12)

m=1,2,...,6 with v such that ¢, (m +6,0)=1¢,(m,o0).
There are 12 eigenvalues. Six of these are nonzero and
six are zero. The six nonzero eigenvalues are twofold and
fourfold degenerate:

A,=a,; t+4ay (twofold),
A.=a,; tay (fourfold) .

The null space contains six vectors. These vectors cor-
respond to the three states that represent conservation
laws (energy, x momentum, and y momentum) and to
three pathological states. These six vectors correspond-
ing to A,=0 constitute the null space of the collision
operator. The vectors associated with the conservation
laws are found from Eq. (A9) upon considering the case
in which Ar? is a local equilibrium fluctuation away from
strict equilibrium. In addition to these three vectors
there are three vectors in the null space that represent
highly nonuniform equilibrium distributions. It is these
latter vectors that are responsible for the difficulties
remarked on in Sec. IIT and illustrated in Sec. IV.

APPENDIX B: CONSERVATION LAWS

In this appendix we sketch explicit calculation of (1)
the local equilibrium densities, (2) the average energy and
the average momentum, and (3) the energy and momen-
tum conservation laws. We do this in terms of the local
equilibrium variables. At the very end we also write out
the conservation laws in terms of the local hydrodynamic
variables.

(1) The local equilibrium densities are defined to be
N (&), Egs. (5) and (6), where

£,=x,(1+8a)—xe-v(1+da) , (B)

N(x)=1/(e*—1), and

x:BOGy
xU:BOGG ’
viny=210
c
B(1)—B,
da(l)=——F7> .
a Bo

(2) The average energy and average momentum are
defined by
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Bee(1)=3 x,N(E,), (B2) and
b 3 G, ¢F3 3 3G,
L(1) — |8v+ [1+— |vgda |=— =~ [da+ vodv
L =3 (e;) N(&,), (B3) ot F, |° xF, 0z 4F, °
" =0. (B11)
with N (&,) given by Eq. (B1).
(3) The energy and momentum conservation laws are The coefficients in Egs. (B8)-(B11) are
2ea%N(§0)+260caei-VN(§,,)=0, (B4) Fi=6x(Po+Qo),
io io P!
ZEN(§U)+2(ei)xcae,--VN(g,,):O . (B5) 2
io io
Py ,
These quantities are found to desired order in the small F3=6x2 vy +Q0 | >
quantities, 8a(1) and v(1), by developing N(&,) in Tay-
lor series in §,—x,. We illustrate here the case in which ) Py .
the drift velocity has a steady component, v, as well as a G,=6x > +Q | >
fluctuating component, dv(1). We treat terms of first or-
der smallness, 6a,8v,v,, and of second order smallness, ; Py .
VoV, Vo0, vo-8v. Terms of second order in the fluctuat- G;=6x e +Q0 | »
ing fields, 8a® and 8v-8v, are ignored. We imagine the
steady component of the drift velocity is established by 4 0 "
suitable means. The ambient conditions of the phonon G,=6x T"'Qo ’
gas are da=0 and v=v,,. Perturbations away from these
ambient conditions are described by the fields, a and Sv. F,=xF;,
Finally to keep x, in and below Eq. (B1), from being con- —xG
fused with a direction x we take the e, direction to be z; G,=xG, ,
we specialize to one-dimensional motion along the z axis; © Gy
VO o« el. GO = 7 *
(1) For N(£,) we find
We define
N(E,)—=Nambient = —X o N, 8a+x2N" e-ve-6v G
2
—xN' (e-5v+e-voda) 6=— |6a+ —vydv (B12)
o 0 2F 3
—xx,N_,evyda , (B6)  and
with
2 Pt + 1421 |us (B13)
Nambient=N(xa)_xN;e'Vo_f'xTN:(e'Vo)z , (B7) v Fl Poda
N,=09N(x,)/dx,,and N, =0N_ /dx,. . . .
(2) Using Egs. (B6) and (B7) we calculate the energy and write the conservation laws in the form
and momentum as called for in Eqs. (B2) and (B3) and a6 96 , ¢ 3P _
= 4+ — == B14
find ot A'EuO dz + 2 3z 0 ( )
Bohe (1)=F;8a(1)+1G,vodu (1), (Bg) and
9P P a6 _
Apz(1)=—‘g—{Fl[Bv(1)+v08a(l)]+le08a(l)} , (B9 At thpuo az TX %, 0 (B13)
where
where Ae(1) and Ap,(1) are the departures of the energy
and momentum from the ambient values. The constants An= 1 _G_4 _ ﬂ
F,,...,G, appearing here and below are defined and dis- E 2|F s F |’
cussed further along in this appendix. G
(3) Using Eq. (B6) in Eqgs. (B4) and (B5) for energy and p=— 2
momentum conservation we find 4xF,

9
at

c 0

8v+ 1+G4 =0
1)) F =

4

voda

(B10)

X=F;/xF,; and uy=vy/c. The energy 6 and momen-
tum P are linear in the fluctuating fields. Thus from Egs.
(B14) and (B15) we can find the velocity of small-
amplitude fluctuations; (1) [v,=0]:
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ot _ F
2T = T (B16)

This is the equation for the velocity of second sound. (2)
[VO;&O]:

F, 172
2xF,

2

L 4

ke

vy - (B17)

This equation shows that a second-sound pulse moving to
the left or right will have a drift velocity in a direction
that depends on the sign of v, and the sign of Ap+Ap.
We find Az +Ap >0 for all x from numerical or analytical
study of the behavior of F,,...,G,. Thus for v,>0, a
steady heat current to the right, a second-sound pulse
will move more slowly to the left (upstream) than it will
to the right (downstream).

For completeness we write out the conservation laws to
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second order in the hydrodynamic variables, Ae(1) and
Ap(1). They are

%At—e+cL)(V-Ap+cLAeV-(AeAp)=O (B18)
and
C C
O8p | °L \V-Ae+ LA, (V-Ap)AP=0,  (BI9)

ot 2 2

where Ae and Ap have been normalized by € and p, re-
spectively, and

1 |Go G,
= | —— B20
“=F |F, F 520
and
p—F‘%. (B21)
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